
Resit Exam Geometry - July 12, 2018

Note: This exam consists of four problems. Usage of the theory and examples of

Chapters 1:1-5, 2:1-5, 3:1-3, 4:1-6 of Do Carmo's textbook is allowed. You may not

use the results of the exercises, with the exception of the results of Exercise 1-5:2,12,

4-3:1,2. Give a precise reference to the theory and/or exercises you use for solving

the problems.

You get 10 points for free.

All functions, curves, surfaces, parametrizations and (normal) vector �elds in the

exam problems are di�erentiable, i.e., of class C∞.

Problem 1. (6+14=20 pt.)

Let α : I→ R3 be a unit-speed curve with non-zero curvature at all points. Here I is

an open interval in R with 0 ∈ I. Let the Frenet frame at α(s) be {t(s),n(s),b(s)}.

Furthermore, t(s) makes a constant angle ϑ ∈ (0, π) with a �xed unit vector u, for

all s ∈ I. (So 〈t(s),u〉 = cos ϑ for all s ∈ I.)

Let C be the curve with parametrization γ : I→ R3 given by

γ(s) = α(s) − 〈α(s) − α(0),u〉u.

1. Prove that C lies in the plane through α(0) orthogonal to u.

2. Prove that the curvature of C at γ(s) is
k(s)

sin2 ϑ
, where k(s) is the curvature of

α at α(s).

Problem 2. (8+6+8=22 pt.)

The goal of this problem is to prove the following theorem of Beltrami-Enneper:

Let C be a regular asymptotic curve, with nowhere zero curvature, on a surface

S. Then K = −τ2 at every point p of C, where K is the Gaussian curvature of S

at p and τ is the torsion of the curve C (considered as a curve in R3) at p.

A possible proof consists of the following steps. Let {t,n,b} be the Frenet frame of

the curve C at a point p ∈ C (unique up to orientation of C).

1. Prove that {t,n} is an orthonormal basis of TpS.

2. As usual, let dNp : TpS→ TpS be the di�erential of the Gauss map at p. Prove

that dNp(t) = ±τn (the sign depends on the orientation of S).

3. Complete the proof of the theorem of Beltrami-Enneper.

(Hint: Recall that dNp is self-adjoint with respect to the inner product on TpS.)

Assignments 3 and 4 on next page
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Problem 3. (8+5+10=23 pt.)

Let α : I→ S be a unit-speed parametrization of a curve C on a regular surface S in

R3. Here I is an open interval in R. Let N be a (di�erentiable) unit normal �eld on

S. The normal vector at the point α(s) is denoted by N(s). The orthonormal frame

consisting of the unit vectors T(s) = α ′(s), N(s) and V(s) = N(s)∧ T(s) is called the

Darboux frame of the curve.

1. Prove that there are di�erentiable functions kn, τg : I→ R such that

N ′(s) = −kn(s)T(s) + τg(s)V(s),

where kn(s) is the normal curvature of the curve at α(s).

The function τg is called the geodesic torsion of the curve α.

2. Prove that C is a line of curvature of S if and only if τg(s) = 0 for all s ∈ I.

3. Prove that C is both a line of curvature and an asymptotic curve of S if and

only if it lies in a plane tangent to S at all points of C.

Problem 4. (8+9+8=25 pt.)

Let C be a regular curve (without self-intersections) in the half-plane {(x, 0, z) | x > 0}.

Let S be the surface of revolution in R3 obtained by rotating C about the z-axis. It

is convenient to use use the parametrization

x(u, v) = (f(v) cosu, f(v) sinu, g(v)),

such that v 7→ (f(v), 0, g(v)) is an arc-length parameterisation of C.

1. Let p and q be two points on C, and let wp ∈ TpS be a unit tangent vector

making an angle ϕ0 with (the tangent line of) C at p. Let wq be the vector

obtained by parallel transporting wp from p to q along C. Prove that wq also

makes an angle ϕ0 with this meridian.

Consider a point p ∈ C. Let Γ be the parallel circle of S through p. Let wp ∈ TpS be

the vector obtained by parallel transporting wp once around Γ . Let ϑ0 be the angle

between TpS and the horizontal plane through p.

2. Prove that the angle ∆ϕ between wp and wp is equal to 2π cos ϑ0.

3. Prove that ∆ϕ is zero if and only if Γ is a geodesic of S.
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Solutions

Problem 1.

1. A straightforward computation shows that 〈γ(s) − α(0),u〉 = 0. In other words,

γ(s) lies in the plane through α(0) with normal vector u.

2. Note that

γ ′(s) = t(s) − 〈t(s),u〉u = t(s) − (cos ϑ)u,

so

|γ ′(s) |2 = | t(s) |2 − 2(cos ϑ)〈t(s),u〉+ (cos2 ϑ)|u |2 = sin2 ϑ.

Since |γ ′(s) | = sin ϑ > 0, and a parametrization of C by arc length is given by

β(u) = γ((sin ϑ)−1u). The curvature of C at γ(s) is equal to the curvature of β at

β((sin ϑ)s). The curvature of β at β(u) is

kβ(u) = |β ′′(u) | =
|γ ′′((sin ϑ)−1u) |

sin2 ϑ
.

Since γ ′′(s) = t ′(s) = k(s)n(s) and k(s) > 0 for all s ∈ I we get

kβ(u) =
k((sin ϑ)−1u)

sin2 ϑ
.

So the curvature of C at γ(s) is

kβ((sin ϑ)s) =
k(s)

sin2 ϑ
.

Remark: Part 2 can also be proven using the result of Exercise 1-5:12b.

Problem 2.

Let α : I → S, with I = (−ε, ε), be a unit-speed parametrization of C with α(0) = p

and α ′(0) = t. Let N be the unit-normal �eld of S, and let N(s) be the unit-normal

at α(s).

1. Since C is an asymptotic curve, we have 〈N(s), α ′′(s)〉 = 0, for s ∈ I. Since α ′(s) =

t(s), and, hence, α ′′(s) = k(s)n(s), we see that k(s)〈N(s),n(s)〉 = 0. Therefore,

〈N(s),n(s)〉 = 0, since k(s) 6= 0. So n(s) ∈ Tα(s)S. Since t(s) = α ′(s) ∈ Tα(s)S, we see
that {t(s),n(s)} is an orthonormal basis of Tα(s)S.

2. The result of Part 1 implies that N(s) = ±b(s). Therefore, dNp(t) = N ′(0) =

±b ′(0) = ±τn.

3. Let dNp(n) = a t+bn. Since dNp is self-adjoint, we know that a = 〈dNp(n), t〉 =
〈n, dNp(t〉 = ±τ. So the matrix of dNp with respect to the basis {t,n} of TpS is(

0 ±τ
±τ b

)
.

Hence, K = detdNp = −τ2.
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Problem 3.

1. Since 〈N ′, N〉 = 0, there are functions a, b : I→ R such that N ′ = aT + bV . Then

a = 〈N ′, T〉 = −〈N, T ′〉 = −〈N,α ′′〉 = −kn. Renaming b to τg we get the desired

identity.

2. This is a rephrasing of the Theorem of Olinde Rodrigues (Chapter 3-2, Proposi-

tion 3).

3. First assume that C lies in a plane tangent to S at every point of C. Then the

normal of S along C is constant, so N ′(s) = 0 for all s ∈ I. This implies that kn(s) = 0

(so C is an asymptotic curve) and τg(s) = 0 (so C is a line of curvature, according to

Part 1).

Conversely, assume that kn(s) = 0 and τg(s) = 0, for all s ∈ I. Then N ′(s) = 0,

so N(s) = N(s0), for s ∈ I (s0 ∈ I is arbitrary). Then C lies in the plane with normal

N(s0) if and only if the function f : I → R, de�ned by f(s) = 〈N(s0), α(s) − α(0)〉,
is zero on I. Since f(s0) = 0 and I is an interval, this follows from the fact that

f ′(s) = 〈N(s0), T(s)〉 = 〈N(s), T(s)〉 = 0.

Problem 4.

1. The curve C is a meridian, and is therefore a geodesic of S (p. 255). An arc-length

parameterisation is given by α(s) = (f(s), 0, g(s)). Let w be the parallel vector �eld

along α such that w(s0) = wp, and let ϕ be the angle between α ′(s) and w(s),

so ϕ(s0) = ϕ0. Since α is a geodesic we have
[
Dα ′

ds

]
= 0, and likewise, since w is

parallel,
[
Dw
ds

]
= 0. Then it follows from Lemma 2 on p. 251 that dϕ

ds = 0, and

therefore ϕ(s) = ϕ0 is a constant for all s.

2. Let p = x(u0, v0), and let β : s 7→ x(u(s), v0) be a unit-speed parameterisation of

Γ . Since Γ is a circle of radius r = f(v0), it follows that u(s) = s/r. Since x is an

orthogonal parameterisation, we may employ Proposition 3 on p. 252, which implies

that
dϕ

ds
= −

1

2
√
EG

{
Gu
dv

ds
− Ev

du

ds

}
. (1)

In our parameterisation we have

xu(u, v) = (−f(v) sinu, f(v) cosu, 0)

xv(u, v) = (f ′(v) cosu, f ′(v) sinu, g ′(v)),

which implies that

2E = f2 F = 0 G = (f ′)2 + (g ′)2 = 1.

In particular, Ev = 2ff
′, and Gu = 0, and Equation (1) becomes

dϕ

ds
=
1

2f
2ff ′u ′ = f ′(v0)

du

ds
=
f ′(v0)

r
=

cos ϑ0
r

.

Integrating, we �nd

∆ϕ =

∫ 2πr
0

dϕ

ds
ds = 2π cos ϑ0.
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3. If Γ is a geodesic, then ∆ϕ = 0. This is a direct consequence of Lemma 2 on p.

251, together with the de�nitions of parallel transport and of geodesics, and is not

particular to our particular context. The converse assertion is not generally true, but

it is in this case.

The previous question shows that ∆ϕ = 0 if and only if cos ϑ0 = 0. Since we have

de�ned ϑ0 ∈ (0, π), it follows that ∆ϕ = 0 if and only if ϑ0 =
π
2 . This means that the

tangent planes along Γ are parallel to the z-axis, and this is a necessary and su�cient

condition for the parallel Γ to be a geodesic, as demonstrated on p. 256.
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